Saturday, 24 December 2011

The Serengeti Story 2: the great migration

Lion admiring the massed migration on the plains, near Naabi, Dec 2011
The second part of the Serengeti Story is the tale of the great migration, the defining heart of the Serengeti Ecosystem. At the broadest level, this is an easy enough  thing to understand - thre are two very important environmental gradients across the ecosystem and the wildebeest (and zebra and eland and gazelles, etc.) are trying to maximise their access to important resources. So, let's start with the two important gradients: rainfall and nutrients, the remaining two of the big four we didn't cover in the first part of the story.

Average Serengeti Rainfall, adapted from here
Starting with rainfall, the broad pattern is for lots of rain in the north and west, and (much) less in the south and east. Perhaps more important still is the seasonal difference in rainfall patterns - most rain falls during the wet season, of course, and the wet season rainfall shows a similar pattern to the overall pattern. But dry season rainfall is the key - the far north and the far west have an average of 400mm of rain even during the dry season, and what's more that's fairly reliable rainfall - the rest of the ecosystem is either compeltely dry, or only ocassionally it by a shower every few years. There's also only one permanent river in the ecosystem - the Mara river in the north. So dry season rainfall means there's green grass to eat, and the Mara river means there's water to drink during the dry season in the far north - an obvious reason for migrant animals to be on the Kenyan / Tanzanian border during the dry season. (In fact the animals move around quite a lot at this time, following local patterns of rainfall and often crossing and recrossing the Mara river throughout their time up there.
A small crossing of the Mara: local movements, not migration, Sept 2011

As the rains become more widespread in November the animals quickly move south, heading away from the woodlands to the short grass plains of the Serengeti NP / Ngorongoro CA border. Why? Well, this is where the other important gradient comes into play, that of nutrients. And this is best understood by looking at the geology of the Serengeti ecosystem in the figure below. Orange areas are 540 - 1500 Million years old, grey areas are recent (within 65 Million years - most only 3 Million years old), Pink areas are over 2500 Million years old and tan coloured bits are also relative recent alluvial (flood) bits, derived from earlier shorelines of Lake Victoria.
Geology of Serengeti, detail from Ordanance Survey map, Saggerson 1961

Broadly speaking there are three geological areas in Serengeti - the southern areas with very recent soils formed on top of the ash deposits from the crater highlands (which form a hard pan that plants can't get their roots through, and only having shallow soil - as illustrated in this picture below froma cutting just east of Naabi gate), the western areas and the north-eastern areas. The north eastern areas are characterised by rocks formed over 2500 Million years ago, whilst the western areas have some more recent deposits from the rivers and different shores of lake Victroia. Unsurprisingly, the nutrients from the ancient rocks in the north have long-since washed away, leaving the north in particular extremely nutrient poor, whilst the short grass plains of the south are very, very rich. Particularly in phosphorus and calcium, both particularly important nutrients for pregnant and lactating wildebeest. The recent soils of the west are rich too, but mainly in Nitrogen, important, but not especially when pregnant. So here, immediately is a massive pull for animals away from those wet, but nutrient poor northern woodlands, down to the dry but nutrient rich grasslands of the south. Obviously they can only get here when it's wet, so timing their breeding to the rainy season on teh short grass plains is a great idea. What's more, predation down here is much lower too, as the hard pan and low rainfall prevents trees and lions have a much tougher time hunting away from the rivers and woodlands, which is great for baby animals.

Soak-away near Naabi showing the hard pan that limits tree growth, but makes grass very fertile
So, now we've got the important data we need for understanding the broad-scale movements of the migration. During the dry season, you've got to be near the Mara, in the far north. Once the rains come you want to move as fast as possible down to the nutrient rich grasslands of the south, where it's wise to give birth. But then once the rains stop, the bad news is that even though the grass stays green for a while, the standing water at Masek and Ndutu is so rich in nutrients that it's actually toxic - so even though the food is still there and still good you've got to start moving off as soon as the rain stops. But instead of heading straight back up the the north, it makes sense to move west, where there's still relatively rich grazing and water remains in the Grumeti and Mbalageti rivers. So come late May the migration moves away from the short grass of the south and heads into the Western Corridor, staying as long as the grass remains before gradually filtering north again as the good grazing is eaten in the west. (That date has got later in recent years, as there's now a lot more grass left in the Grumeti Reserves, thanks to a policy of burning only after the migration has been through - which explains why those northern camps have had some tough starts to the season in recent years!)
Movements of individual wildebeest caught near Seronera (blue circle) from here

And so you have the broad pattern - a triangular migration in a clockwise direction, covering between 500 and 1000kms, and one of the most amazing wildlife sights anywhere on earth. But, as always, the broad scale picture isn't all there is to it. Individual animals take some remarkably different routes around the ecosystem, as some data from gps collared indivudals shows - all these animals were caught near Seronera at the same time, but all have done different things - the dark blue one is particularly interesting, and none of these animals came down the eastern side of the NP at all. Why not? No-one knows - maybe simply because they were all passing Seronera instead. More recent work in the Masai Mara has made even more exciting discoveries, with animals I'd have assumed previously to be local migrants into and out of the Mara showing some extraordinary movements, even joining the main Serengeti migration in some years, but not others - look at these maps from here (they're updated very regularly, as the animals are still out there!)

The first of these spent a year in Kenya, migrating from wet season home in the west to the east and back, but then joined the main Serengeti migration this year and is somewhere in the NCAA today, whilst the other left Kenya last year and headed off to Loliondo for the wet season, before returning this year to wet season home in the north east! What made these animals change their routes from one year to the next? It will be fascinating to try and find out as more data on the movements of individual animals become available. Clearly, understanding the broad scale pattern is only a tiny fraction of the question as a whole and we've lots more to learn.

Anyway, I hope that's a pretty good introduction to some of the Serengeti Story. It's far from static, and there's still lots more to learn, so we're bound to return to the issue in subsequent posts, but I hope this is a good start at least. Meantime, Happy Christmas!

No comments:

Post a Comment